Geef een exacte uitkomst (laat π staan). Zonder ZRM!
- \(83 ^\circ\)
- \(16 ^\circ 30'\)
- \(8 ^\circ 40'\)
- \(17 ^\circ 40'\)
- \(48 ^\circ\)
- \(15 ^\circ 40'\)
- \(24 ^\circ 40'\)
- \(1 ^\circ\)
- \(51 ^\circ\)
- \(6 ^\circ 30'\)
- \(16 ^\circ 40'\)
- \(21 ^\circ 20'\)
Geef een exacte uitkomst (laat π staan). Zonder ZRM!
Verbetersleutel
- \(83 ^\circ= 83^\circ.\frac{\pi \text{ rad}}{180 ^\circ}= \frac{83 \pi}{180} \text{rad}\)
- \(16 ^\circ 30'= \left( 16 + \frac{1}{2} \right)^\circ= \frac{33}2^\circ.\frac{\pi \text{ rad}}{180 ^\circ}= \frac{11 \pi}{120} \text{rad}\)
- \(8 ^\circ 40'= \left( 8 + \frac{2}{3} \right)^\circ= \frac{26}3^\circ.\frac{\pi \text{ rad}}{180 ^\circ}= \frac{13 \pi}{270} \text{rad}\)
- \(17 ^\circ 40'= \left( 17 + \frac{2}{3} \right)^\circ= \frac{53}3^\circ.\frac{\pi \text{ rad}}{180 ^\circ}= \frac{53 \pi}{540} \text{rad}\)
- \(48 ^\circ= 48^\circ.\frac{\pi \text{ rad}}{180 ^\circ}= \frac{4 \pi}{15} \text{rad}\)
- \(15 ^\circ 40'= \left( 15 + \frac{2}{3} \right)^\circ= \frac{47}3^\circ.\frac{\pi \text{ rad}}{180 ^\circ}= \frac{47 \pi}{540} \text{rad}\)
- \(24 ^\circ 40'= \left( 24 + \frac{2}{3} \right)^\circ= \frac{74}3^\circ.\frac{\pi \text{ rad}}{180 ^\circ}= \frac{37 \pi}{270} \text{rad}\)
- \(1 ^\circ= 1^\circ.\frac{\pi \text{ rad}}{180 ^\circ}= \frac{ \pi }{180} \text{rad}\)
- \(51 ^\circ= 51^\circ.\frac{\pi \text{ rad}}{180 ^\circ}= \frac{17 \pi}{60} \text{rad}\)
- \(6 ^\circ 30'= \left( 6 + \frac{1}{2} \right)^\circ= \frac{13}2^\circ.\frac{\pi \text{ rad}}{180 ^\circ}= \frac{13 \pi}{360} \text{rad}\)
- \(16 ^\circ 40'= \left( 16 + \frac{2}{3} \right)^\circ= \frac{50}3^\circ.\frac{\pi \text{ rad}}{180 ^\circ}= \frac{5 \pi}{54} \text{rad}\)
- \(21 ^\circ 20'= \left( 21 + \frac{1}{3} \right)^\circ= \frac{64}3^\circ.\frac{\pi \text{ rad}}{180 ^\circ}= \frac{16 \pi}{135} \text{rad}\)