Bereken
- \(\log 10^{2}\)
- \(\log 1000000000\)
- \(\log 10\)
- \(\log 10^{5}\)
- \(\log \sqrt[3]{ 10 }\)
- \(\log 0,01\)
- \(\log \frac{1}{10^{7}}\)
- \(\log \sqrt[5]{ \left(\frac{1}{10}\right)^{8} }\)
- \(\log \sqrt[9]{ \left(\frac{1}{10}\right) }\)
- \(\log \sqrt[4]{ \left(\frac{1}{10}\right) }\)
- \(\log \sqrt[5]{ 10^{11} }\)
- \(\log \sqrt[10]{ \frac{1}{10^{3}} }\)
Bereken
Verbetersleutel
- \(\log 10^{2}=\log 10^{\frac{2}{1}}=\frac{2}{1}\)
- \(\log 1000000000= \log 10^{9}=9\)
- \(\log 10= \log 10^{1}=1\)
- \(\log 10^{5}=\log 10^{\frac{5}{1}}=\frac{5}{1}\)
- \(\log \sqrt[3]{ 10 }=\log 10^{\frac{1}{3}}=\frac{1}{3}\)
- \(\log 0,01= \log 10^{-2}=-2\)
- \(\log \frac{1}{10^{7}}= \log 10^{-7}=-7\)
- \(\log \sqrt[5]{ \left(\frac{1}{10}\right)^{8} }=\log 10^{\frac{-8}{5}}=\frac{-8}{5}\)
- \(\log \sqrt[9]{ \left(\frac{1}{10}\right) }=\log 10^{\frac{-1}{9}}=\frac{-1}{9}\)
- \(\log \sqrt[4]{ \left(\frac{1}{10}\right) }=\log 10^{\frac{-1}{4}}=\frac{-1}{4}\)
- \(\log \sqrt[5]{ 10^{11} }=\log 10^{\frac{11}{5}}=\frac{11}{5}\)
- \(\log \sqrt[10]{ \frac{1}{10^{3}} }=\log 10^{\frac{-3}{10}}=\frac{-3}{10}\)