Ontbind in factoren door gebruik te maken van merkwaardige producten
- \(196p^{10}+420p^5q+225q^2\)
- \(196s^{4}+84s^2y+9y^2\)
- \(b^2-10b+25\)
- \(225y^{4}+330y^2+121\)
- \(144q^2-49\)
- \(225s^{10}-4\)
- \(144p^{10}+312p^5+169\)
- \(81b^{6}+36b^3+4\)
- \(144b^{4}-168b^2x+49x^2\)
- \(-144p^2+1\)
- \(p^2+2p+1\)
- \(169b^{12}-81x^2\)
Ontbind in factoren door gebruik te maken van merkwaardige producten
Verbetersleutel
- \(196p^{10}+420p^5q+225q^2=(14p^5+15q)^2\)
- \(196s^{4}+84s^2y+9y^2=(14s^2+3y)^2\)
- \(b^2-10b+25=(b-5)^2\)
- \(225y^{4}+330y^2+121=(15y^2+11)^2\)
- \(144q^2-49=(12q+7)(12q-7)\)
- \(225s^{10}-4=(15s^5+2)(15s^5-2)\)
- \(144p^{10}+312p^5+169=(12p^5+13)^2\)
- \(81b^{6}+36b^3+4=(9b^3+2)^2\)
- \(144b^{4}-168b^2x+49x^2=(12b^2-7x)^2\)
- \(-144p^2+1=(1-12p)(1+12p)\)
- \(p^2+2p+1=(p+1)^2\)
- \(169b^{12}-81x^2=(13b^6+9x)(13b^6-9x)\)