Ontbinden in factoren (1)

Hoofdmenu Eentje per keer 

Ontbind in factoren door gebruik te maken van merkwaardige producten

  1. \(196p^{10}+420p^5q+225q^2\)
  2. \(196s^{4}+84s^2y+9y^2\)
  3. \(b^2-10b+25\)
  4. \(225y^{4}+330y^2+121\)
  5. \(144q^2-49\)
  6. \(225s^{10}-4\)
  7. \(144p^{10}+312p^5+169\)
  8. \(81b^{6}+36b^3+4\)
  9. \(144b^{4}-168b^2x+49x^2\)
  10. \(-144p^2+1\)
  11. \(p^2+2p+1\)
  12. \(169b^{12}-81x^2\)

Ontbind in factoren door gebruik te maken van merkwaardige producten

Verbetersleutel

  1. \(196p^{10}+420p^5q+225q^2=(14p^5+15q)^2\)
  2. \(196s^{4}+84s^2y+9y^2=(14s^2+3y)^2\)
  3. \(b^2-10b+25=(b-5)^2\)
  4. \(225y^{4}+330y^2+121=(15y^2+11)^2\)
  5. \(144q^2-49=(12q+7)(12q-7)\)
  6. \(225s^{10}-4=(15s^5+2)(15s^5-2)\)
  7. \(144p^{10}+312p^5+169=(12p^5+13)^2\)
  8. \(81b^{6}+36b^3+4=(9b^3+2)^2\)
  9. \(144b^{4}-168b^2x+49x^2=(12b^2-7x)^2\)
  10. \(-144p^2+1=(1-12p)(1+12p)\)
  11. \(p^2+2p+1=(p+1)^2\)
  12. \(169b^{12}-81x^2=(13b^6+9x)(13b^6-9x)\)
Oefeningengenerator vanhoeckes.be/wiskunde 2025-05-30 03:28:43