Substitutie of combinatie
- \(\left\{\begin{matrix}4x-5y=\frac{-41}{11}\\-x-3y=\frac{-62}{11}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-6x-4y=\frac{-1202}{171}\\-2x=y+\frac{-350}{171}\end{matrix}\right.\)
- \(\left\{\begin{matrix}4x+4y=\frac{-9}{4}\\x-3y=\frac{-45}{16}\end{matrix}\right.\)
- \(\left\{\begin{matrix}5y=-17+3x\\-x-5y=13\end{matrix}\right.\)
- \(\left\{\begin{matrix}5y=\frac{-537}{40}+2x\\-x+y=\frac{-141}{40}\end{matrix}\right.\)
- \(\left\{\begin{matrix}4x+y=\frac{-19}{17}\\-3x-3y=\frac{39}{17}\end{matrix}\right.\)
- \(\left\{\begin{matrix}5x-3y=\frac{155}{38}\\x-y=\frac{39}{38}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-x-4y=\frac{47}{17}\\-3x-4y=\frac{13}{17}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-2y=\frac{-64}{65}-4x\\-4x+y=\frac{149}{65}\end{matrix}\right.\)
- \(\left\{\begin{matrix}3x+6y=\frac{-327}{220}\\2x=y+\frac{41}{110}\end{matrix}\right.\)
- \(\left\{\begin{matrix}3y=\frac{-62}{5}+x\\-3x+3y=\frac{-66}{5}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-y=\frac{86}{13}-3x\\-2x-4y=\frac{246}{13}\end{matrix}\right.\)
Substitutie of combinatie
Verbetersleutel
- \(\left\{\begin{matrix}4x-5y=\frac{-41}{11}\\-x-3y=\frac{-62}{11}\end{matrix}\right.\qquad V=\{(1,\frac{17}{11})\}\)
- \(\left\{\begin{matrix}-6x-4y=\frac{-1202}{171}\\-2x=y+\frac{-350}{171}\end{matrix}\right.\qquad V=\{(\frac{11}{19},\frac{8}{9})\}\)
- \(\left\{\begin{matrix}4x+4y=\frac{-9}{4}\\x-3y=\frac{-45}{16}\end{matrix}\right.\qquad V=\{(\frac{-9}{8},\frac{9}{16})\}\)
- \(\left\{\begin{matrix}5y=-17+3x\\-x-5y=13\end{matrix}\right.\qquad V=\{(1,\frac{-14}{5})\}\)
- \(\left\{\begin{matrix}5y=\frac{-537}{40}+2x\\-x+y=\frac{-141}{40}\end{matrix}\right.\qquad V=\{(\frac{7}{5},\frac{-17}{8})\}\)
- \(\left\{\begin{matrix}4x+y=\frac{-19}{17}\\-3x-3y=\frac{39}{17}\end{matrix}\right.\qquad V=\{(\frac{-2}{17},\frac{-11}{17})\}\)
- \(\left\{\begin{matrix}5x-3y=\frac{155}{38}\\x-y=\frac{39}{38}\end{matrix}\right.\qquad V=\{(\frac{1}{2},\frac{-10}{19})\}\)
- \(\left\{\begin{matrix}-x-4y=\frac{47}{17}\\-3x-4y=\frac{13}{17}\end{matrix}\right.\qquad V=\{(1,\frac{-16}{17})\}\)
- \(\left\{\begin{matrix}-2y=\frac{-64}{65}-4x\\-4x+y=\frac{149}{65}\end{matrix}\right.\qquad V=\{(\frac{-9}{10},\frac{-17}{13})\}\)
- \(\left\{\begin{matrix}3x+6y=\frac{-327}{220}\\2x=y+\frac{41}{110}\end{matrix}\right.\qquad V=\{(\frac{1}{20},\frac{-3}{11})\}\)
- \(\left\{\begin{matrix}3y=\frac{-62}{5}+x\\-3x+3y=\frac{-66}{5}\end{matrix}\right.\qquad V=\{(\frac{2}{5},-4)\}\)
- \(\left\{\begin{matrix}-y=\frac{86}{13}-3x\\-2x-4y=\frac{246}{13}\end{matrix}\right.\qquad V=\{(\frac{7}{13},-5)\}\)