Los de vierkantsvergelijking op zonder de discriminant te gebruiken
- \(4(-6x^2-3x)=-(22x^2-x)\)
- \(-4x^2-10x=-3x^2-3x\)
- \(-4x^2-7x=0\)
- \(-4(4x^2+10x)=-(15x^2+59x)\)
- \(-5x^2+5x=0\)
- \(-8x^2+25x=0\)
- \(3(5x^2-8x)=-(-13x^2+x)\)
- \(-6x^2-9x=-7x^2+7x\)
- \(3x^2+25x=0\)
- \(5(-4x^2-9x)=-(26x^2+50x)\)
- \(4x^2-17x=0\)
- \(3(4x^2+7x)=-(-17x^2-5x)\)
Los de vierkantsvergelijking op zonder de discriminant te gebruiken
Verbetersleutel
- \(4(-6x^2-3x)=-(22x^2-x) \\ \Leftrightarrow -24x^2-12x=-22x^2+x \\
\Leftrightarrow -24x^2-12x+22x^2-x= 0 \\
\Leftrightarrow -2x^2+13x=0 \\
\Leftrightarrow x(-2x+13) = 0 \\
\Leftrightarrow x = 0 \vee -2x+13=0 \\
\Leftrightarrow x = 0 \vee x = \frac{-13}{-2} = \frac{13}{2} \\ V = \Big\{ \frac{13}{2}; 0 \Big\} \\ -----------------\)
- \(-4x^2-10x=-3x^2-3x \\ \Leftrightarrow -x^2-7x=0 \\
\Leftrightarrow x(-x-7) = 0 \\
\Leftrightarrow x = 0 \vee -x-7=0 \\
\Leftrightarrow x = 0 \vee x = \frac{7}{-1} = -7 \\ V = \Big\{ 0 ; -7 \Big\} \\ -----------------\)
- \(-4x^2-7x=0 \\
\Leftrightarrow x(-4x-7) = 0 \\
\Leftrightarrow x = 0 \vee -4x-7=0 \\
\Leftrightarrow x = 0 \vee x = \frac{7}{-4} = \frac{-7}{4} \\ V = \Big\{ 0 ; \frac{-7}{4} \Big\} \\ -----------------\)
- \(-4(4x^2+10x)=-(15x^2+59x) \\ \Leftrightarrow -16x^2-40x=-15x^2-59x \\
\Leftrightarrow -16x^2-40x+15x^2+59x= 0 \\
\Leftrightarrow -x^2-19x=0 \\
\Leftrightarrow x(-x-19) = 0 \\
\Leftrightarrow x = 0 \vee -x-19=0 \\
\Leftrightarrow x = 0 \vee x = \frac{19}{-1} = -19 \\ V = \Big\{ 0 ; -19 \Big\} \\ -----------------\)
- \(-5x^2+5x=0 \\
\Leftrightarrow x(-5x+5) = 0 \\
\Leftrightarrow x = 0 \vee -5x+5=0 \\
\Leftrightarrow x = 0 \vee x = \frac{-5}{-5} = 1 \\ V = \Big\{ 1; 0 \Big\} \\ -----------------\)
- \(-8x^2+25x=0 \\
\Leftrightarrow x(-8x+25) = 0 \\
\Leftrightarrow x = 0 \vee -8x+25=0 \\
\Leftrightarrow x = 0 \vee x = \frac{-25}{-8} = \frac{25}{8} \\ V = \Big\{ \frac{25}{8}; 0 \Big\} \\ -----------------\)
- \(3(5x^2-8x)=-(-13x^2+x) \\ \Leftrightarrow 15x^2-24x=13x^2-x \\
\Leftrightarrow 15x^2-24x-13x^2+x= 0 \\
\Leftrightarrow 2x^2+23x=0 \\
\Leftrightarrow x(2x+23) = 0 \\
\Leftrightarrow x = 0 \vee 2x+23=0 \\
\Leftrightarrow x = 0 \vee x = \frac{-23}{2} \\ V = \Big\{ 0 ; \frac{-23}{2} \Big\} \\ -----------------\)
- \(-6x^2-9x=-7x^2+7x \\ \Leftrightarrow x^2-16x=0 \\
\Leftrightarrow x(x-16) = 0 \\
\Leftrightarrow x = 0 \vee x-16=0 \\
\Leftrightarrow x = 0 \vee x = \frac{16}{1} = 16 \\ V = \Big\{ 16; 0 \Big\} \\ -----------------\)
- \(3x^2+25x=0 \\
\Leftrightarrow x(3x+25) = 0 \\
\Leftrightarrow x = 0 \vee 3x+25=0 \\
\Leftrightarrow x = 0 \vee x = \frac{-25}{3} \\ V = \Big\{ 0 ; \frac{-25}{3} \Big\} \\ -----------------\)
- \(5(-4x^2-9x)=-(26x^2+50x) \\ \Leftrightarrow -20x^2-45x=-26x^2-50x \\
\Leftrightarrow -20x^2-45x+26x^2+50x= 0 \\
\Leftrightarrow 6x^2-5x=0 \\
\Leftrightarrow x(6x-5) = 0 \\
\Leftrightarrow x = 0 \vee 6x-5=0 \\
\Leftrightarrow x = 0 \vee x = \frac{5}{6} \\ V = \Big\{ \frac{5}{6}; 0 \Big\} \\ -----------------\)
- \(4x^2-17x=0 \\
\Leftrightarrow x(4x-17) = 0 \\
\Leftrightarrow x = 0 \vee 4x-17=0 \\
\Leftrightarrow x = 0 \vee x = \frac{17}{4} \\ V = \Big\{ \frac{17}{4}; 0 \Big\} \\ -----------------\)
- \(3(4x^2+7x)=-(-17x^2-5x) \\ \Leftrightarrow 12x^2+21x=17x^2+5x \\
\Leftrightarrow 12x^2+21x-17x^2-5x= 0 \\
\Leftrightarrow -5x^2-16x=0 \\
\Leftrightarrow x(-5x-16) = 0 \\
\Leftrightarrow x = 0 \vee -5x-16=0 \\
\Leftrightarrow x = 0 \vee x = \frac{16}{-5} = \frac{-16}{5} \\ V = \Big\{ 0 ; \frac{-16}{5} \Big\} \\ -----------------\)