Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen
- \(12x^2+26x+17=x+5\)
- \(8x^2+16x+24=-9x+6\)
- \(x^2+21x+65=5x+5\)
- \(x^2-3x-40=0\)
- \(4x^2+37x+136=-11x-8\)
- \(8x^2+15x-2=0\)
- \(x^2-3x-70=0\)
- \(9x^2+44x+65=-4x+1\)
- \(x^2-2x-34=-5x-6\)
- \(4x^2+16x+16=0\)
- \(x^2-18x+0=-10x-7\)
- \(x^2-9x-36=0\)
Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen
Verbetersleutel
- \(12x^2+26x+17=x+5\\
\Leftrightarrow 12x^2+25x+12=0 \\\text{We zoeken de oplossingen van } \color{blue}{12x^2+25x+12=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (25)^2-4.12.12 & &\\
& = 625-576 & & \\
& = 49 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-25-\sqrt49}{2.12} & & = \frac{-25+\sqrt49}{2.12} \\
& = \frac{-32}{24} & & = \frac{-18}{24} \\
& = \frac{-4}{3} & & = \frac{-3}{4} \\ \\ V &= \Big\{ \frac{-4}{3} ; \frac{-3}{4} \Big\} & &\end{align} \\ -----------------\)
- \(8x^2+16x+24=-9x+6\\
\Leftrightarrow 8x^2+25x+18=0 \\\text{We zoeken de oplossingen van } \color{blue}{8x^2+25x+18=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (25)^2-4.8.18 & &\\
& = 625-576 & & \\
& = 49 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-25-\sqrt49}{2.8} & & = \frac{-25+\sqrt49}{2.8} \\
& = \frac{-32}{16} & & = \frac{-18}{16} \\
& = -2 & & = \frac{-9}{8} \\ \\ V &= \Big\{ -2 ; \frac{-9}{8} \Big\} & &\end{align} \\ -----------------\)
- \(x^2+21x+65=5x+5\\
\Leftrightarrow x^2+16x+60=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2+16x+60=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (16)^2-4.1.60 & &\\
& = 256-240 & & \\
& = 16 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-16-\sqrt16}{2.1} & & = \frac{-16+\sqrt16}{2.1} \\
& = \frac{-20}{2} & & = \frac{-12}{2} \\
& = -10 & & = -6 \\ \\ V &= \Big\{ -10 ; -6 \Big\} & &\end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{x^2-3x-40=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-3)^2-4.1.(-40) & &\\
& = 9+160 & & \\
& = 169 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-3)-\sqrt169}{2.1} & & = \frac{-(-3)+\sqrt169}{2.1} \\
& = \frac{-10}{2} & & = \frac{16}{2} \\
& = -5 & & = 8 \\ \\ V &= \Big\{ -5 ; 8 \Big\} & &\end{align} \\ -----------------\)
- \(4x^2+37x+136=-11x-8\\
\Leftrightarrow 4x^2+48x+144=0 \\\text{We zoeken de oplossingen van } \color{blue}{4x^2+48x+144=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (48)^2-4.4.144 & &\\
& = 2304-2304 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-48}{2.4} & & \\
& = -6 & & \\V &= \Big\{ -6 \Big\} & &\end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{8x^2+15x-2=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (15)^2-4.8.(-2) & &\\
& = 225+64 & & \\
& = 289 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-15-\sqrt289}{2.8} & & = \frac{-15+\sqrt289}{2.8} \\
& = \frac{-32}{16} & & = \frac{2}{16} \\
& = -2 & & = \frac{1}{8} \\ \\ V &= \Big\{ -2 ; \frac{1}{8} \Big\} & &\end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{x^2-3x-70=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-3)^2-4.1.(-70) & &\\
& = 9+280 & & \\
& = 289 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-3)-\sqrt289}{2.1} & & = \frac{-(-3)+\sqrt289}{2.1} \\
& = \frac{-14}{2} & & = \frac{20}{2} \\
& = -7 & & = 10 \\ \\ V &= \Big\{ -7 ; 10 \Big\} & &\end{align} \\ -----------------\)
- \(9x^2+44x+65=-4x+1\\
\Leftrightarrow 9x^2+48x+64=0 \\\text{We zoeken de oplossingen van } \color{blue}{9x^2+48x+64=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (48)^2-4.9.64 & &\\
& = 2304-2304 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-48}{2.9} & & \\
& = -\frac{8}{3} & & \\V &= \Big\{ -\frac{8}{3} \Big\} & &\end{align} \\ -----------------\)
- \(x^2-2x-34=-5x-6\\
\Leftrightarrow x^2+3x-28=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2+3x-28=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (3)^2-4.1.(-28) & &\\
& = 9+112 & & \\
& = 121 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-3-\sqrt121}{2.1} & & = \frac{-3+\sqrt121}{2.1} \\
& = \frac{-14}{2} & & = \frac{8}{2} \\
& = -7 & & = 4 \\ \\ V &= \Big\{ -7 ; 4 \Big\} & &\end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{4x^2+16x+16=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (16)^2-4.4.16 & &\\
& = 256-256 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-16}{2.4} & & \\
& = -2 & & \\V &= \Big\{ -2 \Big\} & &\end{align} \\ -----------------\)
- \(x^2-18x+0=-10x-7\\
\Leftrightarrow x^2-8x+7=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-8x+7=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-8)^2-4.1.7 & &\\
& = 64-28 & & \\
& = 36 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-8)-\sqrt36}{2.1} & & = \frac{-(-8)+\sqrt36}{2.1} \\
& = \frac{2}{2} & & = \frac{14}{2} \\
& = 1 & & = 7 \\ \\ V &= \Big\{ 1 ; 7 \Big\} & &\end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{x^2-9x-36=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-9)^2-4.1.(-36) & &\\
& = 81+144 & & \\
& = 225 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-9)-\sqrt225}{2.1} & & = \frac{-(-9)+\sqrt225}{2.1} \\
& = \frac{-6}{2} & & = \frac{24}{2} \\
& = -3 & & = 12 \\ \\ V &= \Big\{ -3 ; 12 \Big\} & &\end{align} \\ -----------------\)