Maak de noemer wortelvrij
- \(\frac{47}{\sqrt{2}}\)
- \(\frac{22}{\sqrt{17}}\)
- \(\frac{26}{\sqrt{15}}\)
- \(\frac{30}{\sqrt{11}}\)
- \(\frac{40}{\sqrt{13}}\)
- \(\frac{23}{\sqrt{10}}\)
- \(\frac{28}{\sqrt{14}}\)
- \(\frac{8}{\sqrt{14}}\)
- \(\frac{13}{\sqrt{10}}\)
- \(\frac{54}{\sqrt{10}}\)
- \(\frac{17}{\sqrt{15}}\)
- \(\frac{47}{\sqrt{13}}\)
Maak de noemer wortelvrij
Verbetersleutel
- \(\frac{47}{\sqrt{2}}=\frac{47\cdot \color{red}{\sqrt{2}} }{\sqrt{2}\cdot \color{red}{\sqrt{2}} }=\frac{47\cdot\sqrt{2}}{2}\)
- \(\frac{22}{\sqrt{17}}=\frac{22\cdot \color{red}{\sqrt{17}} }{\sqrt{17}\cdot \color{red}{\sqrt{17}} }=\frac{22\cdot\sqrt{17}}{17}\)
- \(\frac{26}{\sqrt{15}}=\frac{26\cdot \color{red}{\sqrt{15}} }{\sqrt{15}\cdot \color{red}{\sqrt{15}} }=\frac{26\cdot\sqrt{15}}{15}\)
- \(\frac{30}{\sqrt{11}}=\frac{30\cdot \color{red}{\sqrt{11}} }{\sqrt{11}\cdot \color{red}{\sqrt{11}} }=\frac{30\cdot\sqrt{11}}{11}\)
- \(\frac{40}{\sqrt{13}}=\frac{40\cdot \color{red}{\sqrt{13}} }{\sqrt{13}\cdot \color{red}{\sqrt{13}} }=\frac{40\cdot\sqrt{13}}{13}\)
- \(\frac{23}{\sqrt{10}}=\frac{23\cdot \color{red}{\sqrt{10}} }{\sqrt{10}\cdot \color{red}{\sqrt{10}} }=\frac{23\cdot\sqrt{10}}{10}\)
- \(\frac{28}{\sqrt{14}}=\frac{28\cdot \color{red}{\sqrt{14}} }{\sqrt{14}\cdot \color{red}{\sqrt{14}} }=\frac{28\cdot\sqrt{14}}{14}=2\cdot\sqrt{14}\)
- \(\frac{8}{\sqrt{14}}=\frac{8\cdot \color{red}{\sqrt{14}} }{\sqrt{14}\cdot \color{red}{\sqrt{14}} }=\frac{8\cdot\sqrt{14}}{14}=\frac{4\cdot\sqrt{14}}{7}\)
- \(\frac{13}{\sqrt{10}}=\frac{13\cdot \color{red}{\sqrt{10}} }{\sqrt{10}\cdot \color{red}{\sqrt{10}} }=\frac{13\cdot\sqrt{10}}{10}\)
- \(\frac{54}{\sqrt{10}}=\frac{54\cdot \color{red}{\sqrt{10}} }{\sqrt{10}\cdot \color{red}{\sqrt{10}} }=\frac{54\cdot\sqrt{10}}{10}=\frac{27\cdot\sqrt{10}}{5}\)
- \(\frac{17}{\sqrt{15}}=\frac{17\cdot \color{red}{\sqrt{15}} }{\sqrt{15}\cdot \color{red}{\sqrt{15}} }=\frac{17\cdot\sqrt{15}}{15}\)
- \(\frac{47}{\sqrt{13}}=\frac{47\cdot \color{red}{\sqrt{13}} }{\sqrt{13}\cdot \color{red}{\sqrt{13}} }=\frac{47\cdot\sqrt{13}}{13}\)