Bereken de grootte van de hoek(en) en de lengte van de zijde(n) in een rechthoekige driehoek
\(\)
\(\)
\( a = \sqrt{14^2+10^2} \approx 17,205 \text{ (Pythagoras)} \\
\text{sin}(B)=\frac{14}{17,205} \Leftrightarrow B = \text{arcsin}(\frac{14}{17,204650534085}) \approx 54,462=54^\circ 27' 44,4" \text{ (Formule sinus)}\\
\text{sin}(C)=\frac{10}{17,205} \Leftrightarrow C = \text{arcsin}(\frac{10}{17,204650534085}) \approx 35,538=35^\circ 32' 15,6" \text{ (Formule sinus)}\\
-----alternatief----\\
\text{tan}(B)=\frac{14}{10} \Leftrightarrow B = \text{arctan}(\frac{14}{10})\approx 54,462=54^\circ 27' 44,4" \text{ (Formule tangens)}\\
\text{tan}(C)=\frac{10}{14} \Leftrightarrow C = \text{arctan}(\frac{10}{14})\approx 35,538=35^\circ 32' 15,6" \text{ (Formule tangens)}\\
-----controle-----\\
B + C = 90^\circ \Leftrightarrow 54^\circ 27' 44,4"+35^\circ 32' 15,6" = 90^\circ \text{(Complementaire hoeken)}\)