Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen
- \(x(9x-33)=-25(x+1)\)
- \(\frac{9}{5}x^2+\frac{13}{5}x+\frac{4}{5}=0\)
- \(\frac{1}{4}x=-\frac{1}{8}x^2+1\)
- \((-2x-4)(5x+2)-x(-14x-17)=1\)
- \(\frac{1}{2}x^2+\frac{13}{6}x+2=0\)
- \(10x^2-(3x-64)=x(x-17)\)
- \(2x^2-(12x-120)=x(x+10)\)
- \(-(9-23x)=-2x^2-(-63-16x)\)
- \((x+1)(-2x+1)-x(-3x+5)=89\)
- \(17x^2-(12x-3)=5x(x-5)\)
- \(10x^2-(8x-144)=x(x+64)\)
- \(\frac{1}{4}x^2-\frac{17}{4}x+\frac{35}{2}=0\)
Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen
Verbetersleutel
- \(x(9x-33)=-25(x+1) \\
\Leftrightarrow 9x^2-33x=-25x-25 \\
\Leftrightarrow 9x^2-8x+25=0 \\\text{We zoeken de oplossingen van } \color{blue}{9x^2-8x+25=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-8)^2-4.9.25 & &\\
& = 64-900 & & \\
& = -836 & & \\ & < 0 \\V &= \varnothing \end{align} \\ -----------------\)
- \(\frac{9}{5}x^2+\frac{13}{5}x+\frac{4}{5}=0\\
\Leftrightarrow \color{red}{5.} \left(\frac{9}{5}x^2+\frac{13}{5}x+\frac{4}{5}\right)=0 \color{red}{.5} \\
\Leftrightarrow 9x^2+13x+4=0 \\\text{We zoeken de oplossingen van } \color{blue}{9x^2+13x+4=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (13)^2-4.9.4 & &\\
& = 169-144 & & \\
& = 25 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-13-\sqrt25}{2.9} & & = \frac{-13+\sqrt25}{2.9} \\
& = \frac{-18}{18} & & = \frac{-8}{18} \\
& = -1 & & = \frac{-4}{9} \\ \\ V &= \Big\{ -1 ; \frac{-4}{9} \Big\} & &\end{align} \\ -----------------\)
- \(\frac{1}{4}x=-\frac{1}{8}x^2+1 \\
\Leftrightarrow \frac{1}{8}x^2+\frac{1}{4}x-1=0 \\
\Leftrightarrow \color{red}{8.} \left(\frac{1}{8}x^2+\frac{1}{4}x-1\right)=0 \color{red}{.8} \\
\Leftrightarrow x^2+2x-8=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2+2x-8=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (2)^2-4.1.(-8) & &\\
& = 4+32 & & \\
& = 36 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-2-\sqrt36}{2.1} & & = \frac{-2+\sqrt36}{2.1} \\
& = \frac{-8}{2} & & = \frac{4}{2} \\
& = -4 & & = 2 \\ \\ V &= \Big\{ -4 ; 2 \Big\} & &\end{align} \\ -----------------\)
- \((-2x-4)(5x+2)-x(-14x-17)=1\\
\Leftrightarrow -10x^2-4x-20x-8 +14x^2+17x-1=0 \\
\Leftrightarrow 4x^2+5x-9=0 \\\text{We zoeken de oplossingen van } \color{blue}{4x^2+5x-9=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (5)^2-4.4.(-9) & &\\
& = 25+144 & & \\
& = 169 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-5-\sqrt169}{2.4} & & = \frac{-5+\sqrt169}{2.4} \\
& = \frac{-18}{8} & & = \frac{8}{8} \\
& = \frac{-9}{4} & & = 1 \\ \\ V &= \Big\{ \frac{-9}{4} ; 1 \Big\} & &\end{align} \\ -----------------\)
- \(\frac{1}{2}x^2+\frac{13}{6}x+2=0\\
\Leftrightarrow \color{red}{6.} \left(\frac{1}{2}x^2+\frac{13}{6}x+2\right)=0 \color{red}{.6} \\
\Leftrightarrow 3x^2+13x+12=0 \\\text{We zoeken de oplossingen van } \color{blue}{3x^2+13x+12=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (13)^2-4.3.12 & &\\
& = 169-144 & & \\
& = 25 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-13-\sqrt25}{2.3} & & = \frac{-13+\sqrt25}{2.3} \\
& = \frac{-18}{6} & & = \frac{-8}{6} \\
& = -3 & & = \frac{-4}{3} \\ \\ V &= \Big\{ -3 ; \frac{-4}{3} \Big\} & &\end{align} \\ -----------------\)
- \(10x^2-(3x-64)=x(x-17) \\
\Leftrightarrow 10x^2-3x+64=x^2-17x \\
\Leftrightarrow 9x^2+14x+64=0 \\\text{We zoeken de oplossingen van } \color{blue}{9x^2+14x+64=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (14)^2-4.9.64 & &\\
& = 196-2304 & & \\
& = -2108 & & \\ & < 0 \\V &= \varnothing \end{align} \\ -----------------\)
- \(2x^2-(12x-120)=x(x+10) \\
\Leftrightarrow 2x^2-12x+120=x^2+10x \\
\Leftrightarrow x^2-22x+120=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-22x+120=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-22)^2-4.1.120 & &\\
& = 484-480 & & \\
& = 4 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-22)-\sqrt4}{2.1} & & = \frac{-(-22)+\sqrt4}{2.1} \\
& = \frac{20}{2} & & = \frac{24}{2} \\
& = 10 & & = 12 \\ \\ V &= \Big\{ 10 ; 12 \Big\} & &\end{align} \\ -----------------\)
- \(-(9-23x)=-2x^2-(-63-16x) \\
\Leftrightarrow -9+23x=-2x^2+63+16x \\
\Leftrightarrow 2x^2+7x-72=0 \\\text{We zoeken de oplossingen van } \color{blue}{2x^2+7x-72=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (7)^2-4.2.(-72) & &\\
& = 49+576 & & \\
& = 625 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-7-\sqrt625}{2.2} & & = \frac{-7+\sqrt625}{2.2} \\
& = \frac{-32}{4} & & = \frac{18}{4} \\
& = -8 & & = \frac{9}{2} \\ \\ V &= \Big\{ -8 ; \frac{9}{2} \Big\} & &\end{align} \\ -----------------\)
- \((x+1)(-2x+1)-x(-3x+5)=89\\
\Leftrightarrow -2x^2+x-2x+1 +3x^2-5x-89=0 \\
\Leftrightarrow x^2-3x-88=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-3x-88=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-3)^2-4.1.(-88) & &\\
& = 9+352 & & \\
& = 361 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-3)-\sqrt361}{2.1} & & = \frac{-(-3)+\sqrt361}{2.1} \\
& = \frac{-16}{2} & & = \frac{22}{2} \\
& = -8 & & = 11 \\ \\ V &= \Big\{ -8 ; 11 \Big\} & &\end{align} \\ -----------------\)
- \(17x^2-(12x-3)=5x(x-5) \\
\Leftrightarrow 17x^2-12x+3=5x^2-25x \\
\Leftrightarrow 12x^2+13x+3=0 \\\text{We zoeken de oplossingen van } \color{blue}{12x^2+13x+3=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (13)^2-4.12.3 & &\\
& = 169-144 & & \\
& = 25 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-13-\sqrt25}{2.12} & & = \frac{-13+\sqrt25}{2.12} \\
& = \frac{-18}{24} & & = \frac{-8}{24} \\
& = \frac{-3}{4} & & = \frac{-1}{3} \\ \\ V &= \Big\{ \frac{-3}{4} ; \frac{-1}{3} \Big\} & &\end{align} \\ -----------------\)
- \(10x^2-(8x-144)=x(x+64) \\
\Leftrightarrow 10x^2-8x+144=x^2+64x \\
\Leftrightarrow 9x^2-72x+144=0 \\\text{We zoeken de oplossingen van } \color{blue}{9x^2-72x+144=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-72)^2-4.9.144 & &\\
& = 5184-5184 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-(-72)}{2.9} & & \\
& = 4 & & \\V &= \Big\{ 4 \Big\} & &\end{align} \\ -----------------\)
- \(\frac{1}{4}x^2-\frac{17}{4}x+\frac{35}{2}=0\\
\Leftrightarrow \color{red}{4.} \left(\frac{1}{4}x^2-\frac{17}{4}x+\frac{35}{2}\right)=0 \color{red}{.4} \\
\Leftrightarrow x^2-17x+70=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-17x+70=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-17)^2-4.1.70 & &\\
& = 289-280 & & \\
& = 9 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-17)-\sqrt9}{2.1} & & = \frac{-(-17)+\sqrt9}{2.1} \\
& = \frac{14}{2} & & = \frac{20}{2} \\
& = 7 & & = 10 \\ \\ V &= \Big\{ 7 ; 10 \Big\} & &\end{align} \\ -----------------\)