Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen
\(x(x+12)=5(x-2)\)
\(x(x+12)=5(x-2) \\
\Leftrightarrow x^2+12x=5x-10 \\
\Leftrightarrow x^2+7x+10=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2+7x+10=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (7)^2-4.1.10 & &\\
& = 49-40 & & \\
& = 9 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-7-\sqrt9}{2.1} & & = \frac{-7+\sqrt9}{2.1} \\
& = \frac{-10}{2} & & = \frac{-4}{2} \\
& = -5 & & = -2 \\ \\ V &= \Big\{ -5 ; -2 \Big\} & &\end{align} \\ -----------------\)